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Introduction

Among ocular diseases, glaucoma is one of the main factors of 
blindness (1), by 2020 estimated to impact about 80 million  
people (2). Vision loss by glaucoma is not reversible, which 
is much different from myopia, cataracts and other ocular 
diseases (3). Glaucoma is like a silent thief. When many 
patients have not realized their bad situation, their sight has 
already been stolen (4). But if glaucoma can be screened 
in the early stage, the bad effects of vision loss can be 
mitigated or even avoided. Thus, it is requisite to carry out 
early screening to retain vision and keep quality of life. 

Presently, there exist three methods for glaucoma 

screening: function-based visual field test, intraocular 
pressure (IOP) measurement and optic nerve head (ONH) 
assessment (5-7). Function-based visual field testing, 
uncommon in primary healthcare, needs professional 
perimetric instrument and therefore is unsuitable for 
screening. Despite as a significant risk factor, IOP is not that 
specific as an effective method for many glaucoma patients 
whose IOP is normal. Furthermore, visual symptoms often 
do not exist in early glaucoma. Compared with them, ONH 
assessment, which now is well-used by trained specialists, 
is a facile method for glaucoma detection. However, it is 
very expensive and time consuming for professionals to 
take ONH assessment, especially in large-scale screening. 
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Therefore, it would be of benefit and significance to achieve 
the automation of ONH assessment.

The binary class i f icat ion between healthy and 
glaucomatous subjects based on image features is one 
strategic approach for automatic ONH assessment (8-10). 
Image-level features are often used. As for the strategy, 
it is challenging and difficult for features selection and 
classification strategy (11). Following the clinical indicators 
is the other strategic approach. Like disc diameter (12), the 
vertical cup to disc ratio (CDR) (13), rim to disc area ratio (14), 
ISNT rule (15), peripapillary atrophy (PPA) (16), many risk 
factors of glaucoma are taken into account. In the above 
parameters, CDR is commonly accepted and well used by 
clinicians. As illustrated in Figure 1, CDR is calculated as 
the ratio of vertical cup diameter (VCD) to vertical disc 
diameter (VDD) (6). Generally, the larger CDR, the higher 
risk of glaucoma and vice versa. CDR acts as a big one in 
glaucoma screening and diagnosis. The key to automatically 
calculate CDR in fundus images is segmentation of optic 
disc (OD) and optic cup (OC). Thus, realizing segmentation 
of OD and OC accurately and automatically from fundus 
images is a meaningful work. 

Currently there are various techniques used for OD, OC 
or, OD and OC segmentation (11,17,18). These techniques 
help clinicians and professionals to analyze or diagnose 
glaucoma with more accurate and specific information. 
The paper is an overview of research about the OD or OC 
segmentation for glaucoma screening from fundus images 

by our team in recent years and we wish it can provide 
guidance and bring inspiration to other researchers. In this 
paper, we introduce the segmentation-based methodologies 
as two parts: hand-craft feature and deep learning feature. 
The hand-craft feature method contains sliding window 
regression, superpixel level, image reconstruction, 
superpixel level low-rank representation (LRR) and so on.

We present the following article in accordance with 
the Narrative review checklist (available at: http://dx.doi.
org/10.21037/aes-2020-lto-005). 

Retinal image datasets

Most methodologies of OD and OC segmentation shown 
within this article are evaluated upon the following datasets. 
Among the datasets below, Singapore Chinese Eye Study 
(SCES) and Singapore Indian Eye Study (SINDI) datasets 
are private. A brief introduction of these datasets is provided 
in this section.

ORIGA dataset

The Online Retinal Fundus Image Dataset for Glaucoma 
Analysis and Research (ORIGA) contains 650 images, 
including 482 normal eyes and 168 glaucomatous eyes. 
The Singapore Eye Research Institute (SERI) acquired this 
dataset through Singapore Malay Eye Study (SiMES). The 
image dimension in this dataset is 3,072×2,048. The images 

Figure 1 The optic disc structure: the region enclosed by the red line is the optic disc; the central bright zone enclosed by the white line is 
the optic cup; and the region between the red and white lines is the neuroretinal rim (6). VCD, vertical cup diameter; VDD, vertical disc 
diameter.
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are with well annotations by trained professionals.

MESSIDOR dataset

This dataset consists of 1,200 images in uncompressed TIFF 
format; With a research program sponsored by the French 
Ministries of Research and Defense, three ophthalmological 
departments achieve the images on a Topcon TRC NW6 
nonmydriatic retinography. The retinography with a 45° 
field of view has a color video 3CCD camera. Risk of 
macular edema and retinopathy grade are offered by the 
medical experts.

REFUGE dataset

On MICCAI-OMIA Workshop 2018, Retinal Fundus 
Glaucoma Challenge (REFUGE, https://refuge.grand-
challenge.org) (19) was held. This glaucoma challenge 
includes the following tasks: segmentation of disc/cup, 
glaucoma screening, and fovea localization. REFUGE 
dataset contains 1,200 fundus images with pixel annotations 
and has been divided to 3 subsets: 400 images for training, 
400 images for validation and 400 images for test.

SCES dataset

This dataset was constructed in a screening study. The 
dataset constructed by SCES has 1,676 images with 46 
glaucomatous eyes. There pictures are with two image 
dimensions: 3,888×2,592 and 3,504×2,336.

SINDI dataset

This dataset consists of 5,783 eye images with 5,670 normal 
eyes and 113 glaucomatous eyes. These images were 
acquired in the SINDI.

Evaluation criteria

This part will be stated in two aspects: segmentation metric 
and classification metric.

Segmentation metric

Absolute CDR error

S GAbsolute CDR Error CDR CDR= −
	

[1]

in which CDRS is the CDR calculated by the segmented 

result and CDRG indicates the manual CDR from trained 
specialist.

Overlapping error (E) or non-overlap ratio (m1)
Overlapping error is also called non-overlap ratio in some 
paper. In the following equation, D indicates the segmented 
mask, and G denotes manual ground truth. Ground truth 
is the segmented reference images which are annotated 
accurately by ophthalmic professionals.
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Relative absolute area difference (m2)
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−

= 	 [3]

Classification metric

Receiver operating characteristic (ROC) curve and area 
under ROC curve (AUC)
As an important criterion, it is significant for assessing 
the classification performance. AUC indicates separability 
degree and ROC is a curve of probability. It shows the 
distinguishing capability of the model between classes. 
Higher the AUC, better the model. By analogy, higher the 
AUC, better the model is distinguishing between patients 
with disease and no disease. The ROC curve is plotted with 
true positive rate (TPR) against the false positive rate (FPR) 
where TPR is on y-axis and FPR is on the x-axis.

Sensitivity/TPR/recall
Sensitivity, also called TPR, recall, or hit rate in some 
fields, represents the correctly identified actual positives 
proportion. The larger the value of sensitivity, the larger the 
“sickness is judged to be sick” and the smaller the “missed 
diagnosis”. Sensitivity is calculated as follows:

TPSen
TP FN

=
+

	 [4]

TN indicates the number of true negatives and TP 
represents true positives. And FN is the number of false 
negatives. 

Specificity
Specificity is called the true negative rate, too. It denotes 
the correctly identified negatives proportion. Larger the 

https://refuge.grand-challenge.org
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value of specificity, larger the “healthy is judged as healthy” 
and the smaller the “misdiagnosis”. Specificity is calculated 
as follows:

TNSpe
TN FP

=
+

	 [5]

TP indicates true positives number. TN denotes the 
number of true negatives, FP denotes false positives number 
and FN represents false negatives number.

1 FPFPR Spe
TN FP

= − =
+ 	

[6]

Balanced accuracy
Balanced Accuracy is obtained by normalizing true negative 
and true positive predictions by the numbers of negative 
and positive samples, respectively, and divides their sum 
into two. The equation is as follows:

2
Sen SpeBAcc +

= 	 [7]

Segmentation based methods

In this part, technical information will be introduced in 
details. Nine literature from international journals or 
conferences since 2011 are selected as the representative. 
Currently, the segmentation generally focuses on the 
methodologies as hand-craft feature and deep learning 
feature, as summarized in Table 1.

Hand-craft feature

In 2011, a sliding windows based machine learning 
method for cup detection was proposed (Figure 2) (20). 
The positioned disc was marked first through a centrally 
located ellipse which is arbitrary-sized, non-rotated. Then 
cup candidates within every disc image were obtained by a 
series of sliding windows in various sizes. In the following 
steps, a new region-based color features were extracted: (I) 
the saturation and hue values were scaled linearly to match 
color channels of blue and green and histogram the values; 
(II) redundant features were generated through various bin 
numbers. After that, the most discriminant and effective 
features were picked by the method based on group sparsity; 
(III) to achieve the original features of a candidate cup 
within the disc image, 3 types of features were concatenated 
over various bin numbers and 4 color channels, which 
leads to a feature dimension. Due to the fact that for a 
given channel, the optimal bin numbers and suitable color 

channels were not clear, so group sparsity constraint was 
adopted for features selection of cup localization. After 
picking features, with the assistance of non-linear radial 
basis function (RBF) kernels, the support vector regression 
(SVR) algorithm was employed for candidates ranking. And 
by the non-maximal suppression (NMS) strategy, ultimate 
outcomes were generated. 

The suggested strategy obtained 26.8% non-overlap 
ratio with manually-annotated ground-truth, 0.091 absolute 
CDR error and 31.5% relative absolute area difference 
on ORIGA dataset. Although the method achieved good 
results, it has limitations. Owing to the suppression of the 
cup rim by NMS, it may be ineffective on big cups in some 
degrees. Besides, the sliding window approach needs a lot of 
computational cost.

After the sliding window technique, a lot of effort was 
put into the OC localization. With retinal structure priors, 
a superpixel based learning framework was presented in the 
next year (21). Flowchart for algorithms presented in Figure 3.

About the localization of the OC, there were 5 steps: 
(I) superpixel segmentation by Simple Linear Iterative 
Clustering (SLIC) algorithm. Superpixels can preserve 
local boundaries, which has great values; (II) blood vessel 
removal by the bottom-hat filtering algorithm. The purpose 
of this step is to avoid the effects of blood vessel on rim/
cup classification. But the algorithm may be optimized 
in precision for the speed consideration at that time; (III) 
feature (location and color information) representation for 
superpixels; (IV) superpixel classification through support 
vector machine (SVM) classifier. Of course, such application 
is built upon retinal structure prior knowledge based on 
discussions with professional graders, namely, if superpixels 
are outside the ellipse which has the same center as disc and 
whose radius is 9/10 of disc radius, then they must be in the 
rim area, while if superpixels are inside the ellipse which 
has the same center as disc and whose radius is 1/5 of disc 
radius, then they must be in the cup; (V) classification label 
refinement by introducing contextual information. This 
introduction is realized through the way of superpixel labels 
filtration regarding similarity of features among superpixels 
in certain range.

This method gets non-overlap ratio of 26.7%, relative 
absolute area difference of 29.0% and absolute CDR error 
of 0.081 upon ORIGA dataset. It makes contributions 
in 3 main aspects. Firstly, the superpixel method is more 
effective and descriptive than pixel level. Compared with 
sliding window method, it saves more computational 
resources. Secondly, with structural priors upon relative 
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Table 1 Overview of the optic disc and cup segmentation methods for glaucoma screening from fundus images

Article Year Technique Evaluation criteria Dataset Performance

Sliding Window and Regression 
Based Cup Detection in Digital 
Fundus Images for Glaucoma 
Diagnosis (20)

2011 Sliding window 
regression

Non-overlap ratio ORIGA Non-overlap ratio: 26.8%

Relative absolute 
area difference

Relative absolute area difference: 
31.5%

Absolute CDR error Absolute CDR error: 0.091

Efficient Optic Cup Detection from 
Intra-image Learning with Retinal 
Structure Priors (21)

2012 Superpixel based 
learning with retinal 
structural priors

Non-overlap ratio ORIGA Non-overlap ratio: 26.7%

Relative absolute 
area difference

Relative absolute area difference: 
29.0%

Absolute CDR error Absolute CDR error: 0.081

Superpixel Classification Based 
Optic Cup Segmentation (22)

2013 Superpixel 
classification based 
method

Overlapping error ORIGA Mean overlapping error: 26.0%

Absolute CDR error Mean CDR error: 0.100 
(glaucoma), 0.075 (healthy)

AUC and ROC 
curve

AUC: 0.811

SCES AUC: 0.813

Superpixel Classification based 
Optic Disc and Optic Cup 
Segmentation for Glaucoma 
Screening (6)

2013 Superpixel 
classification based 
method

Overlapping error ORIGA Mean overlapping error: 9.4% for 
optic disc segmentation, 24.1% 
for optic cup segmentation

CDR error Mean CDR error: 0.107 
(glaucoma), 0.077 (healthy)

AUC and ROC 
curve

AUC: 0.800

SCES AUC: 0.822

MESSIDOR Mean overlapping error: 12.5% 
for optic disc segmentation

Efficient Reconstruction-Based 
Optic Cup Localization for 
Glaucoma Screening (23)

2013 Reconstruction-
based learning 
technique

Non-overlap ratio ORIGA Non-overlap ratio: 0.225 for optic 
cup localization

Absolute CDR error Absolute CDR error: 0.071 for 
optic cup localization

AUC and ROC 
curve

AUC: 0.823; sensitivity: 58.0%; 
specificity: 85%

Sensitivity

Specificity SCES AUC: 0.860; sensitivity: 73.9%; 
specificity: 85%

Table 1 (continued)
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Table 1 (continued)

Article Year Technique Evaluation criteria Dataset Performance

Optic Cup Segmentation for 
Glaucoma Detection Using Low-
Rank Superpixel Representation (24)

2014 Low-rank 
superpixel 
representation

Non-overlap ratio ORIGA Non-overlap ratio: 0.256

Relative absolute 
area difference

Relative absolute area difference: 
0.270

Absolute CDR error Absolute CDR error: 0.079

Automatic Feature Learning for 
Glaucoma Detection Based on 
Deep Learning (25)

2015 Deep learning AUC and ROC 
curve

ORIGA AUC: 0.838

SCES AUC: 0.898

Joint Optic Disc and Cup 
Segmentation Based on Multi-label 
Deep Network and Pola (26)

2018 Deep learning, Overlapping error ORIGA Mean overlapping error: 0.071 for 
optic disc segmentation, 0.230 
for optic cup segmentation

M-Net Balanced accuracy Balanced accuracy: 0.983 for 
optic disc segmentation, 0.930 
for optic cup segmentation

AUC and ROC 
curve

AUC: 0.85; absolute CDR error: 
0.071

Absolute CDR error SCES AUC: 0.90

Disc-aware Ensemble Network for 
Glaucoma Screening from Fundus 
Image (27)

2018 Deep learning, 
DENet

Sensitivity ORIGA –

Specificity

Balanced accuracy SCES AUC: 0.9183; sensitivity: 0.8478; 
specificity: 0.8380

AUC and ROC 
curve

Balanced accuracy: 0.8429

SINDI AUC: 0.8173; sensitivity: 0.7876; 
specificity: 0.7115

Balanced accuracy: 0.7495

CDR, cup to disc ratio; ROC, receiver operating characteristic; AUC, area under ROC curve.

disc and cup locations, the process of classifier learning can 
extract training samples from test image itself. Thus, the 
process does not depend upon training samples with pre-
labels. Thirdly, by combining local context and structural 
priors, the article presents a classification refinement 
scheme. 

Not long after,  a method of the same type was  
published (22). The effectiveness of this method was 
validated again. In this paper (Figure 4), superpixel 
classification-based method was used. There are 3 steps: 
(I) the disc image was cropped into superpixels by an over-

segmentation step; (II) features were computed via a step 
of feature extraction; (III) to estimate the boundary and 
classify every superpixel as rim or cup, a classification 
step was used. In feature extraction step, there are four 
challenges: (I) there is big difference in the contrast between 
cup and rim; (II) the illumination varies among images; 
(III) illumination of OD in the image is unbalanced; (IV) 
there exists high similarity in blood vessels of the rim and 
cup. As for these challenges, the following pointed methods 
were adopted: (I) enhance the image contrast: histogram 
equalization was applied for 3 contrast enhanced intensity 
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maps; (II) the pixels mean intensities (MI) within superpixel 
were used; (III) calculate center surround statistics (CSS) 
by the variance and mean of these maps within superpixels 

to overcome the third issue; (IV) in current superpixel 
classification, context features also includes CSS and MI 
from adjacent superpixels to distinguish vessels of the two 
regions. A vessels superpixel usually possess more than 
two non-vessel neighbors via proper selection of desired 
superpixels number. Hence, better differentiation can be 
achieved between vessels of the rim and cup.

Tested on ORIGA and SCES dataset, outcomes present 
AUC as 0.811 and 0.813 in the two databases. Besides, 
compared with manual cup region, average overlapping error 
is about 26.0%. In this paper, due to the relatively obvious 
pallor of most glaucomatous subjects, MI shows its merits 
as a feature. CSS, which is not susceptible to illumination 
change, could help to reduce difficulties by uneven lighting. 
Additionally, there also exists limitations in CDR-based 
screening. To achieve performance improvement, combining 
factors including CDR is the expectation.

After these OC segmentation work for glaucoma 
screening, the approach based on superpixel classification 
was applied to the segmentation of OC and OD (6). Figure 5  
shows the flowchart for algorithms in this work. For the 
purpose of automatic CDR measurement. The paper was 
presented as follows: (I) OD segmentation: the image was 
cropped into superpixels by a step of superpixel generation 
based on SLIC; then features from every superpixel was 
computed via a step of feature extraction, in which contrast 

A disc image

Cup candidates by sliding 
windows

Feature representation

Feature selection based on 
group sparsity constraint

Non-linear regression model

Detection result fusion with NMS

Calculating CDR

A disc image

Superpixel generation by SLIC 
algorithm

Feature extraction to compute features 
from superpixel

Superpixel classification by LIBSVM with linear 
kernel

Smoothing

Ellipse fitting

Calculating CDR

Figure 2 Flowchart for algorithms proposed in (20). CDR, cup to 
disc ratio; NMS, non-maximal suppression. Figure 4 Flowchart for algorithms proposed in (22). SLIC, Simple 

Linear Iterative Clustering; CDR, cup to disc ratio.

A disc image

Superpixel segmentation by 
SLIC algorithm

Blood vessel removal by the bottom-hat 
filtering algorithm

Feature representation for superpixels
and normalization

Superpixel classification by SVM classifier with 
prior knowledge of retinal structure

Classification label refinement

Calculating CDR

Figure 3 Flowchart for algorithms proposed in (21). SLIC, Simple 
Linear Iterative Clustering; CDR, cup to disc ratio; SVM, support 
vector machine. 
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enhanced histogram was for color information and CSS 
for texture variation in the PPA. After extracting features, 
to estimate the boundary and classify every superpixel 
as non-disc or disc, a classification step was employed. 
(II) OC segmentation: feature selection and superpixel 
differentiation for OC evaluation; (III) CDR calculation.

In the article, OC structure priors were incorporated. 
CDR was obtained according to the segmented OC 
and OD for glaucoma screening. In addition, a score of 
self-assessment reliability was introduced to make OD 
segmentation result more reliable. This assessment is 
of good significance but has rarely been used for OD 
segmentation. Usually, OD is much alike an ellipse. If 
segmentation based on superpixel and actual boundary 
are close, then before and after ellipse fitting the achieved 
boundary should be close. Or else, there seems less 
reliability of the results. Hence, taking self-assessment 
seems very important, especially in the cases where utilizers 
are noticed with potential risks. 

Tested on ORIGA and SCES dataset, the suggested OC 
and OD segmentation approaches respectively obtain the 
AUC as 0.800 and 0.822. According to communication with 
specialists, such accuracy can be employed in glaucoma 
screening of a large scale. But there remain some features 
which can be improved. For instance, this approach may 
underestimate samples with big OC and over-estimate the 
small OC with unobvious pallor, because the classifier is 
mainly trained with medium-sized OC. This condition 

may be optimized by collecting more training samples or 
adopting multiple kernels. Besides, the model could not 
contain a few cases like sudden changes in boundary of OC 
or OD.

Besides superpixel method, there also exists the 
reconstruction-based method for OC localization. Different 
from former methods with low-level visual cues, this 
strategy (Figure 6) (23) treats the input picture entirely. 
Then with assistance of the codebook with reference 
images containing manual annotations, the OC parameters 
are inferred. The approach consists of two sections: first, 
realize disc segmentation and normalization by either 
Template Matching or Active Shape Model (ASM) with 
codebook pictures training, and then position OC through 
the suggested reconstruction-based strategy. In first section 
of OD segmentation and normalization, two techniques 
were utilized for the purpose of comparing different OD 
segmentation results on the OC localization. In the final 
results, with the comparison, the developed approach shows 
noticeable advance in accuracy of OC localization.

For the evaluation of OC localization accuracy on 
ORIGA dataset, the method acquires non-overlap ratio 
as 22.5% and absolute CDR error of 0.071, a remarkable 
progress compared with the state-of-the-art strategies 
at that moment. Results upon SCES dataset indicates 
this strategy gains AUC as 0.86, sensitivity as 73.9% and 
specificity as 85%. These results present the one-step 
reconstruction-based strategy possess more favorable 

Retinal image

Superpixel generation by SLIC 
algorithm

Feature extraction to compute features 
from superpixel

Superpixel classification by LIBSVM 
with linear kernel

Validation by  self-assessment reliability 
score

Superpixel generation by SLIC 
algorithm

Feature extraction to compute features 
from superpixel

Superpixel classification by LIBSVM with linear 
kernel

Smoothing

Ellipse fitting

Calculating CDR
Localization and segmentation of disc

Localization and segmentation of cup

Figure 5 Flowchart for algorithms proposed in (6). SLIC, Simple Linear Iterative Clustering; CDR, cup to disc ratio.
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features and faster speed than previous methods. The 
progress indicates the promising future of such method 
in screening practice. This method performance can be 
further improved via combing with a learning algorithm or 
introducing more data from multiple modalities.

In 2014, an unsupervised method for OC segmentation 
which does not require extra training data was developed (24).  
Flowchart of algorithms proposed in this paper has been 
illustrated in Figure 7. 

This suggested approach framework has 4 major 
procedures: (I) crop the input OD into superpixels by SLIC; 
(II) owing to similarity of blood vessels from the rim or cup, 

get rid of superpixels lying on blood vessels; (III) no matter 
the superpixel belongs to rim or cup, annotate every one by 
the LRR based unsupervised method; (IV) achieve the only 
ellipse which represents the boundary of output OC via 
post-processing. The article has similar steps with the paper 
mentioned above (21) except that a new unsupervised LRR-
based method for superpixel labelling was proposed.

Superpixel labeling is one of the key steps and it is 
an essential binary classification, where two categories 
correspond to rim and OC, separately. This problem 
has been settled in closed form with singular value 
decomposition (SVD) of the kernel matrix. Parameter 
selection is an open-ended question for LRR-based 
strategies. But for automatic determination of candidate 
values, an adaptive strategy was proposed in this work. A 
majority vote is then taken for ultimate outcome based on 
clustering outcome in regard to various candidate values.

Assessed on ORIGA dataset, outcomes were as expected. 
In this article, specifically, a few parameter candidates 
covering the entire range was determined first. And then 
by fusion between labels and corresponding candidate 
parameter via majority voting, ultimate mark of every pixel 
was achieved.

Deep learning feature

Having talked about sliding window regression, superpixel 
level, image reconstruction, super-pixel level LRR, 
deep learning feature methods will be illustrated in the 
following. With the development of scientific and technical 
development, more and more methods about deep learning 
was used for glaucoma screening (28,29). In 2015, an 
automatic feature learning (ALADDIN) for detection of 
glaucoma was presented (25). The approach framework 
is based on CNN, which includes 6 layers: 5 multiplayer 
perception convolutional layers and 1 fully-connected 
layer. And there also exists overlapping layers and response-
normalization layers. For the glaucoma classification, 
the steps were listed as follows: (I) disc segmentation 
through Template Matching based on PPA elimination, 
PPA detection and constraint elliptical Hough transform; 
(II) dropout and data augmentation to expand the dataset. 
The step utilizes dropout for model combination and label 
preserving transformations. This step was to decrease 
overfitting on image data; (III) Automatic Classification by 
Softmax Regression. The Regression is a generalization of 
a logistic regression classifier, which considers as input the 
condensed feature maps of the pooling layer. 

A disc image

Disc Segmentation and Normalization by either ASM 
trained on codebook images or Template Matching

localize the optic cup with closed-form 
reconstruction-based method

Calculating CDR

Figure 6 Flowchart for algorithms proposed in (23). ASM, Active 
Shape Model; CDR, cup to disc ratio.

Figure 7 Flowchart for algorithms proposed in (24). SLIC, Simple 
Linear Iterative Clustering; CDR, cup to disc ratio; LRR, low-rank 
representation.

A disc image

Superpixel segmentation by SLIC 
algorithm

Remove superpixels that lie on blood 
vessels

Superpixel labeling by LRR based 
unsupervised approach

Post-processing to obtain a unique ellipse 
representing the output cup boundary 

Calculating CDR
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In this work, AUC and ROC curve were employed to 
assess the performance. ORIGA dataset was arranged as 
the training and SCES dataset was as the test data, AUC on 
SCES and ORIGA are 0.898 and 0.838, respectively. The 
AUC values are 0.823 and 0.860 on SCES dataset. Deep 
learning method is a hot topic in current research methods, 
and applications in glaucoma screening will be deeper and 
wider.

In 2018, deep learning techniques have developed to 
mature in some degrees. As for the segmentation of OD 
and OC, it has been addressed as a multi-label task and 
clarified via M-Net, an end-to-end deep network (26). 
Here, the M-Net works out the segmentation of OD and 
OC jointly. Figure 8 illustrates the M-Net framework, 
containing multi-label segmentation part and image polar 
transformation. It has four aspects: (I) a multi-scale layer 
employed to build an image pyramid input and get multi-
level receptive field fusion; (II) a U-shape convolutional 
network, which is the main body structure to learn a 
rich hierarchical representation. This layer is to enhance 
segmentation quality effectively. There are several merits of 
the multi-scale input layer: (i) to avoid the large growth of 
parameters, multi-scale inputs were integrated into decoder 
layers; (ii) increase the network width of decoder path; (III) 
side-output layer to support deep layer supervision. This 
layer acts as a classifier that produces a companion local 
output map for early layers. 

For collective OD and OC segmentation, based on Dice 
coefficient, a multi-label loss function was proposed. The 
function deals well with the multi-label and imbalance data 
of pixel-wise segmentation for fundus image.

In this work, for the performance improvement in 
OC and OD segmentation, a polar transformation was 
presented. (I) Spatial constraint. The redial relationship was 
transferred from polar transformation to redial relationship. 
It is convenient to utilize the layer-like spatial structure, 
particularly some segmentation approaches based on 
layers could be used for post-processing. (II) Equivalent 
augmentation. Due to the pixel-wise mapping of polar 
transformation, the data augmentation has the same 
effect on original fundus image and on polar coordinate. 
Augmenting with different scaling factor has the same 
effect with employing various transformation radius R. In 
this way, with polar transformation and various parameters, 
the data augmentation for deep learning can be done. (III) 
Balancing cup proportion. The polar transformation not 
only can increase the cup region via utilizing interpolation, 
but also can enlarge the OC proportion. Based on OD 

center, it flat the image. Such balanced areas assist to prevent 
overfitting in training and further enhance the performance 
of segmentation.

At last, the researchers assess the performance of M-Net 
on ORIGA dataset. The M-Net achieves state-of-the-
art segmentation performance, with 0.07 and 0.23 for 
average overlapping error of OD and OC segmentation, 
respectively. The proposed strategy achieves highest 
performances with AUC as 0.90 and 0.85 on SCES and 
ORIGA datasets. In a word, the system produces state-
of-the-art segmentation performance on ORIGA dataset. 
Meanwhile, based on the calculated CDR, the suggested 
strategy also achieved the satisfactory results for glaucoma 
screening on the two datasets.

Immediately after the M-Net, Disc-aware Ensemble 
Network (DENet) with novelty was developed (27). This 
network consists of four deep streams which corresponds to 
kinds of modules and levels of fundus image. 

In the DENet, the whole image-level representation was 
realized via two streams. One is a standard framework of 
classification based on Residual Network (ResNet). And the 
other is the segmentation-guided network. Through the disc-
segmentation representation, the second network fulfilled the 
OD region localization and generated a detection result.

Two loss functions were utilized in the whole fundus 
image level frameworks. Binary cross entropy loss function 
and Dice coefficient, the two are respectively for glaucoma 
detection layer and disc segmentation assessment. By 
standard stochastic gradient descent (SGD), the two 
functions are integrated into backpropagation efficiently. 
For the local disc region representations, the network 
employs two local streams: a standard classification network 
based on ResNet on the original local disc region, as shown 
in Figure 9, while the other stream focuses on the disc polar 
transformation.

The DENet achieved excellent results on the SINDI 
dataset (0.8173 AUC) and the SCES dataset (0.9183 AUC) 
compared to 5 state-of-the-art glaucoma screening baselines 
and the IOP method. The experiments on two glaucoma 
datasets denote the network is better than the state-of-the-
art algorithms.

This paper contributes majorly in the following aspects:
(I)	 This proposed framework has an ensemble 

architecture, which can be further improved and 
applied flexibly, embedded into most of the existing 
networks.

(II)	 A segmentation-guided network is proposed with 
localization of disc region. Through embedding the 
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disc-segmentation representation, the network can 
generate the screening result.

(III)	 The authors of this paper construct the SINDI 
dataset.

Summary

In this review article, we have comprehensively presented 
sliding window regression, super-pixel level, image 
reconstruction, super-pixel level LRR, deep learning 
methodologies for segmentation of OD and OC which 
assist to measure or assess CDR for automatic glaucoma 
screening. The diversity and complexity of ONH structure 
makes the glaucoma screening by CDR more challenging. 
But as we introduced above, every approach has its 
advantages and limitations. As an illustration, currently, 
blood vessels inside the disc often influence the disc 
boundaries inferior and superior. It is usually difficult to 
determine the cup nasal side boundary even manually due 
to the existence of blood vessels. Some approaches help to 
identify boundary of the disc and cup at these parts, but 
they may not contain some morphology like that cup or 
disc boundary presents a sudden change. Besides, most of 
the current methods were tested on limited datasets. In a 
word, there must be many imperfect or unknown things in 
ophthalmic images analysis, so there is still a long way to go. 
On one hand, we should strengthen technical development, 
on the other hand, we should try our best to make 
contribution to ecological development of the community. 

Back to this paper, the main objective is to give a brief 
description of current segmentation methodologies and 
a quick overview. This article will provide a valuable 
reference for relevant professionals. For CDR calculation 
for glaucoma screening, CDR is just the reflection for a 
small part of the disc, while utilizing comprehensive factors 
or multimodal images is the promising future direction to 
furthermore enhance the performance.
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