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Introduction

Age-related macular degeneration (AMD) is the most 

important cause of severe vision loss among the elderly 

in developed nations. As life expectancy continues to 

increase, the prevalence of this disease is expected to rise 

dramatically over the next few decades and AMD will 

become an increasingly important major health problem 
worldwide with global socio-economic implications (1-7).  
The majority of patients with AMD manifest the non-
neovascular form of the disease, accounting for 85–90% 
of all cases of AMD (8,9). The precise natural history of 
non-neovascular AMD appears unpredictable for a given 
eye, with some eyes developing macular neovascularization 
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(MNV) and others progressing directly to geographic 
atrophy (GA) during the late stages of the disease (10). It is 
important to note that atrophy is not exclusive to dry AMD, 
as it can precede or follow MNV, and some suggested using 
the term macular atrophy (MA) to describe atrophy in eyes 
with neovascular AMD (11). While effective anti-vascular 
endothelial growth factor (VEGF) therapeutics are available 
to treat the neovascular form of AMD, no proven therapy 
is currently available for the prevention or treatment 
of atrophy (12). The Age-related Eye Disease Study 
(AREDS) trial demonstrated that micronutrient antioxidant 
supplements could reduce progression of intermediate AMD 
to late AMD, the benefit was primarily in reducing the 
development of MNV, with no clear benefit on preventing 
central atrophy (13-16). Recently, lampalizumab (17),  
a selective complement factor D inhibitor, failed to show 
any benefit in reducing the enlargement of GA lesions in 
the Chroma and Spectri Phase 3 trials (18). These studies 
did enroll patients with high risk for GA progression, 
and showed that in these eyes the GA lesions enlarged at 
a rate of approximately 2 mm2 per year. More recently, 
Liao et al. (19) published the results of the Phase 2 Filly 
study pegcetacoplan, an inhibitor of complement factor 3 
activation (APL-2), as a potential therapy for GA. There 
appeared to be a reduction in the GA enlargement rate 
compared to sham treatment over 12 months, though there 
was a higher incidence of exudation in the treated patients. 
Phase 3 trials of pegcetacoplan (19) and avacincaptad 
pegol (20) are currently in progress. A number of other 
therapeutic agents are also currently under investigation, 
but even if these are successful, it is likely they would only 
slow, but not stop or reverse the progression. Thus, there 
has been an increasing interest in earlier intervention 
prior to the development of atrophy. Early intervention 
trials, however, require identifying subjects who are at the 
highest risk of progression, in order to effectively design 
a trial that is of practical size and duration to be clinically 
feasible. Thus, there has been a strong focus recently on 
identifying imaging biomarkers which could be used for risk 
stratification and prognostication. A number of structural 
OCT biomarkers including high central drusen volume, 
subretinal drusenoid deposits, hyporeflective drusen cores, 
and intraretinal hyperreflective foci have been defined 
(21,22). In addition, to the photoreceptor and retinal 
pigment epithelium (RPE) that can be studied by structural 
OCT, the inner choroidal vasculature, and in particular 
the choriocapillaris (CC) is thought to be important in the 
pathophysiology of AMD. The development and continued 

evolution of optical coherence tomography angiography 
(OCTA) technology, has now allowed the three dimensional 
retinal microvasculature and CC to be visualized and 
quantified in a non-invasive manner. Thus, OCTA has 
provided a key technological tool to more precisely explore 
the role of the choroidal vasculature in the pathophysiology 
of AMD (23,24). 

In this review, we describe the current studies of the CC 
in eyes with dry AMD evaluated using OCTA, describing 
the role of CC flow deficit as a risk factor that could 
be prognostic for the progression of the disease to late 
stages. We begin by reviewing the classification of non-
neovascular AMD, including the hallmarks of the disease 
and the current retina imaging technologies for identifying 
and monitoring its progression. Subsequently, we will 
summarize the main quantitative CC studies conducted in 
eyes with early, intermediate and late AMD using OCTA. 
Finally, we discuss the impact of the OCTA CC findings as 
prognostic factors in the progression of the disease and the 
current limitations for the use of OCTA.

Early changes in dry AMD

Histopathological and OCT-based studies have reported 
that the earliest changes in the natural history of non-
neovascular AMD occur at the level of the interface between 
retina and choroid, involving the outer segments of the 
photoreceptors, retinal pigment epithelium (RPE), Bruch’s 
membrane (BM) and CC (25-29). Early changes in dry 
AMD include the deposition of material within the BM and 
between the BM and the RPE, causing thickening in the 
sub-RPE space with deposition of soft drusen, subretinal 
drusenoid deposits (SDD) and pigmentary abnormalities 
associated with attenuation, discontinuity and disruption of 
the RPE (30-32). Subretinal drusenoid deposits has been 
recognized as a distinctive phenotype in eyes with non-
neovascular AMD in which the subretinal deposits are 
located internally to the RPE in contrast to the soft drusen, 
located externally to the RPE (33).

From these early changes, the dry form of AMD 
can progress to either MNV and/or atrophy. In the 
atrophic process the RPE degeneration is associated with 
photoreceptor degeneration and CC attenuation (34,35). 

Classification of non-neovascular AMD and GA

Currently, several AMD classification schemes and grading 
systems have been proposed in the effort to assess the 
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severity of the disease and eventually guide physicians and 
researchers in both diagnosis and management of AMD 
(36-40). Most of these have been based on standard color 
fundus photographs which provide an easy translation to 
clinical examination and ophthalmoscopy. The most recent 
such classification system was proposed by the Beckman 
Initiative for Macular Research (40). This classification 
is based on lesions assessed within 2 disc diameters of the 
fovea in subjects older than 55 years, using either color 
photos or clinical exam. Eyes with no visible drusen or 
pigmentary abnormalities are considered to be normal 
or have no evidence of AMD. Small isolated drusen, also 
termed drupelets (<63 μm) are considered physiologic aging 
changes and not considered as part of the AMD spectrum, 
potentially with no increased risk of late AMD compared 
to the general population. Medium drusen (ranged 63–
125 μm) in the absence of pigmentary abnormalities are 
considered as evidence of “early” AMD, while isolated large 
drusen or large drusen associated with pigmentary changes 
are hallmarks of “intermediate” AMD. The term “late 
AMD” implies the presence of MNV or GA, regardless of 
whether the foveal center is involved or not. 

In 2017, the Classification of Atrophy Meeting (CAM) 
group recommended a multi-modal retinal imaging 
approach to optimally assess atrophy (41), proposing optical 
coherence tomography (OCT) as the base or reference 
technology. The CAM group also developed a consensus 
nomenclature and a set of OCT-based definitions for 
atrophy associated with AMD (42). The term “complete 
RPE and outer retina atrophy” (c RORA) was introduced, 
and defined by the presence of choroidal hypertransmission 
and attenuation of the RPE band ≥250 microns with 
overlying photoreceptor loss. More recently the CAM 
group also introduced the term incomplete retinal pigment 
epithelial and outer retina atrophy (iRORA) to describe 
an intervening phase in the transition from intermediate 
AMD to cRORA (43). The detection of early atrophic 
changes in eyes with intermediate AMD may be particularly 
informative and useful for clinical trials aiming to develop 
new therapeutic options for dry AMD.

Aging and AMD

The precise interaction of the photoreceptors, RPE, and CC 
in the pathophysiology are incompletely understood (35).  
There is also uncertainty as to the precise transition 
between normal aging and early AMD. The Alabama Study 
on Early Macular Degeneration (ALSTAR2) proposed the 

hypothesis that early AMD is a disease of micronutrient 
deficiency and vascular insufficiency, due to detectable 
structural changes in the retinoid re-supply mechanism 
from the CC to the photoreceptors, causing dysfunction 
of the rod-photoreceptors (44). This study confirms the 
need for better understanding of the early AMD changes, 
including the CC, in order to develop useful preventive 
strategies for dry AMD. 

Retinal imaging in dry AMD

Although color photographs have been the historical 
gold standard for classifying AMD, most clinicians 
and researchers have now moved to a multimodal 
imaging approach (24), including infrared reflectance, 
autofluorescence, and OCT for the monitoring of AMD. 
These technologies, however, do not allow the CC to be 
evaluated in detail.

OCTA and CC 

OCTA employs motion contrast to detect blood flow and 
acquires three-dimensional volumetric information of 
the retina and choroid to provide high-resolution, depth-
resolved segmentation of the vascular layers, including the 
CC. Given the vascular images of OCTA are co-registered 
with structural OCT B-scans data, it is possible to correlate 
the vascular changes with structural features highlighted 
on the OCT B-scans. OCTA may be performed using 
both spectral-domain (SD) and swept-source (SS) devices. 
SD-OCTA is characterized by a broad bandwidth light 
source which is coupled with a spectrometer, while SS-
OCTA is equipped with photodetectors and a tunable laser 
light source that operates through a range of frequencies. 
Moreover, SS-OCTA is characterized by a generally faster 
rate of acquisition of the images, at 100,000–400,000 A-scans 
per second, versus in the range of 70,000 A-scans per second 
for most commonly available SD-OCTA systems. The 
speed of acquisition is particularly important because OCTA 
relies on decorrelation between sequentially acquired 
OCT B-scans, therefore the quality of the resultant image 
depends on the velocity of acquisition. In addition, SS-
OCTA operates at a wavelength of ~1,050 versus 840 nm 
for SD-OCTA, allowing a deeper penetration of the signal 
through the RPE, pigment deposits and drusen, thereby 
providing better visualization of the choroid and CC and a 
more detailed high-resolution high-definition image (45).  
The improved imaging speed and deeper penetration has 
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significantly improved our capacity to visualize and quantify 
the CC in the setting of disease. Typical CC en face OCTA 
images are characterized by a granular appearance, in 
which small dark regions, are interspersed with bright 
areas, indicating the presence of flow. The dark regions 
are believed to represent areas with blood flow below 
the decorrelation threshold, making the blood flow not 
detectable on the en face OCTA image. These areas can 
either represent healthy areas with slow flow or areas with 
absent flow secondary to either normal intercapillary spacing 
for age or a pathological process involving the CC (23).  
Our group has reported that an increase in CC FD may 
be found in healthy eyes as result of the physiological 
aging process, and that this increase is most pronounced 
centrally (46). The dark areas related to an impairment of 
the CC are called “flow deficits” (FD), and also referred 
to by some investigator as signal voids (23,47-51). The 
size of these flow deficits may determine whether they are 
pathologic or not, and some authors have suggested that the 
normal intercapillary distance (ICD) should be taken into 
account and small physiologic FDs should be excluded in 
quantitative studies of the CC (52). Histological studies (53) 
have shown that the normal ICD diameters vary from the 
central macula to the periphery and that the intercapillary 
spaces in the posterior pole are distributed in a dense 
capillary meshwork pattern with diameters ranging from 2 
to 20 microns. This pattern has been confirmed by in vivo 
SS-OCTA (51,54) and Zhang et al. (52) have proposed to 
exclude spaces smaller than 24 µm in diameter from the CC 
FD quantification. 

Quantitative assessment of the CC

Given that the CC appears to be progressively impaired 
with age, and because of interest in precisely studying the 
CC in AMD, quantification of the CC has a topic of great 
interest (46,49,50,55). Thus far there is no universally 
accepted consensus protocol to quantify CC FDs, but there 
has been steady progress in understanding the pitfalls and 
limitations of various approaches. In 2017, Al-Sheikh et al.  
proposed the Otsu’s global thresholding methodology to 
visulalize the CC FDs (48). The Otsu’s method reports 
the FDs following a bimodal distribution on grey-level 
histograms (56). Other researchers used the mean pixel 
value in the outer retina layer (ORL) as a global threshold to 
quantify the CC FDs (23,57,58). This methodology makes 
the assumption that the ORL shares the same systemic noise 
characteristics as the CC, without considering that the CC 

is located under the RPE complex, which can result in a 
rise in the noise level due the scattering nature of the RPE. 
Carnevali et al. evaluated CC FDs using the mean pixel 
value of the CC as a global threshold (59). The multiscale 
Hessian enhancement was also proposed as a morphometric 
methodology to measure CC in SS-OCTA (60). At present, 
the most commonly used methodology is to binarize, detect 
and quantify CC FDs with Phansalkar’s method (61), which 
is a local thresholding methodology (46,47,49,50,62-66). 
This methodology defines the CC FDs in all the areas is 
which flow is lower than the given Phansalkar radius set as 
a threshold. A limitation of this method is that the selection 
of the Phansalkar radius has to take into consideration the 
actual size of the pixels in the image. Recently, the fuzzy 
C-means (FCM) self-clustering algorithm has been proposed 
to segment the CC FDs (66,67). This methodology 
automatically assigns all pixels in a CC scan into clusters 
based on histogram distribution. Another quantification 
algorithm, the standard deviation (SD) method, takes into 
consideration the mean and SD from the reference normal 
database to determine a global threshold. Pixels with an 
intensity lower than one SD below the reference mean were 
considered as FDs. To summarize, the major limitation in 
assessing the FDs is the lack of a globally approved and 
validated approach to analyze the CC. 

CC quantitative studies in dry AMD 

Early and intermediate AMD are characterized by drusen 
and/or pigmentary abnormalities on OCT B-scans 
and OCTA has allowed the correlation between in vivo 
microvascular alterations in the CC to structural changes in 
the retina and RPE (55,68), CC en face OCTA images of 
early non-neovascular AMD eyes showed a general increase 
in choriocapillaris FD when compared to age-matched 
healthy controls (69). This suggested that the transition 
from normal aging to early AMD may be reflected in the 
CC. Our group has investigated CC features in eyes with 
intermediate AMD using both SD- and SS-OCTA (70,71). 
We observed an increase in the CC flow deficits size, but 
no overall change in CC FD% in intermediate AMD eyes 
compared to healthy controls, though the regions directly 
below drusen could not be studied as this study utilized 
SD-OCTA. Shadowing artifacts due to drusen are an 
important limitation of many SD-OCTA based studies of 
AMD (70). On the other hand, the study conducted using 
SS-OCTA by Borrelli et al. demonstrated that the CC FD 
was greater in intermediate AMD eyes (71). The increase 
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in the CC FD% is thought to be due an increase in the 
diseased and non-functional choriocapillaris (Figure 1). 
Lane et al. (72) conducted a comparative study using both 
SD- and SS-OCTA and demonstrated the superiority of 
SS technology in quantifying the CC under drusen in early 
and intermediate AMD (Figure 2). In addition, Zhang et al. 
reported on a method to compensate for signal attenuation 
on OCTA using the corresponding strucutural OCT en 
face slab from the same location (51). 

Borrelli et al. (71) also demonstrated that the CC 
specifically beneath drusen demonstrated an increased 
CC FD compared to drusen-free region, suggesting a 
relationship between the status of the choriocapillaris 
and drusen. In addition, CC FD also appeared impaired 
in the 150-microns wide region surrounding the drusen, 
indicating a propensity for capillary segments to be 
affected in the proximity of an area already functionally 
impaired (73). More recently, Nassisi et al. investigated 

Figure 1 Choriocapillaris flow deficits in intermediate AMD. (A) Central OCT B-scan demonstrating evidence of large drusen consistent with 
intermediate age-related macular degeneration. (B) Choriocapillaris en face OCTA and corresponding binarized CC slab (C) obtained with 
swept-source OCTA from the same eye showing evidence of CC impairment ( yellow arrow). AMD, age-related macular degeneration;  OCT, 
optical coherence tomography; OCTA, OCT angiography; CC, choriocapillaris.

CA

B

Figure 2 SD-OCTA and SS-OCTA imaging. Choriocapillaris en face OCTA in a eye with non-neovascular AMD imaged using a spectral-
domain (A) and swept-source device (B), respectively. Notice there is less signal attenuation in the swept-source image compared to the 
spectral domain image. SD, spectral-domain; SS, swept-source; OCTA, optical coherence tomography angiography; AMD, age-related 
macular degeneration.

BA
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choriocapillaris FD in different areas of the macula in 
eyes with early/intermediate AMD and correlated CC 
FD% in these regions with the subsequent development 
or enlargement of drusen (55). New incident drusen or 
enlargement of existing drusen correlated with those 
regions where the CC FD appeared more impaired at 
baseline, suggesting that the location in which drusen 
develop may not be stochastic, but rather dictated by the 
status of the underlying CC. Mullins et al. reported that 
increased sub-RPE deposit density correlates with CC loss 
and the development of drusen over areas of choroid with 
ghost vessels (73). In 2019, Braun et al. investigated the 
correlation between the clinical stage of dry AMD and the 
global and regional CC perfusion using SS-OCTA (74).  
The authors found a relationship between the stage of 
dry AMD and CC perfusion, most prominent in the more 
peripheral regions of macular 6 mm × 6 mm OCTA scans. 
We also recently reported a correlation between CC FD% 
and scotopic microperimetric retinal sensitivity in early 
and intermediate AMD (75,76). Moult et al. reported 
an association between drusen-associated GA (DAGA) 
and CC FD (77). Taken together, these findings appear 
to highlight the central role of CC in the progression of 
intermediate dry AMD to nascent GA and successively GA 
(50,78,79). Our group has compared the CC FD in eyes 
affected by GA with normal controls and eyes with MNV, 
finding that CC FD are greater in eyes with GA (49).  
We speculated that MNV could possibly represent a 
compensatory response to CC impairment as the “last-

attempt” to protect RPE and photoreceptors. In contrast, 
eyes which progress to GA may represent a more severe 
stage of the disease with poor and altered compensatory 
mechanisms (80). One topic of debate with regards to the 
CC FD in eyes with GA is whether the CC “flow deficits” 
represent real absence of flow (i.e., loss or closure of the 
CC), or simply reduced flow below the detection threshold. 
Several studies have published alterations in the CC FD 
in eyes with GA in the area surrounding the GA lesion, in 
which the RPE does not show detectable atrophic changes 
yet (50) (Figure 3). Nassisi et al. reported an increased CC 
FD in the zone immediately surrounding the GA lesions, 
suggesting these areas could be relevant to the progression 
of GA (50). In a subsequent study, Nassisi et al. investigated 
the correlation between CC FD within the peri- and para-
atrophic region surrounding the GA lesions and the yearly 
growth rate (yGR) of GA, reporting a statistically significant 
correlation (78). More recently, Alagorie et al. analyzed the 
CC FD in eyes with GA in different locations using multiple 
concentric rings surrounding the GA lesions and correlated 
the FD% with the yGR of GA (79). Only the CC FD% in 
surrounding rings within 500 microns of the GA border were 
correlated with the yGR of the lesion. In contrast, Thulliez 
et al. found the strongest correlation between choriocapillaris 
FD and rate of progression when considering the entire 
scan area outside of the GA lesions, rather than just the zone 
immediately surrounding the GA (81). Regardless, these 
studies highlight the important role of the choriocapillaris 
in the progression of dry AMD. 

Figure 3 Choriocapillaris flow deficits in eyes with geographic atrophy. Geographic atrophy (GA) lesion imaged using swept-source optical 
coherence tomography angiography (OCTA). The GA lesion is represented by a well-delineated area of choriocapillaris (CC) loss (within 
the red dotted line) on the choriocapillaris (CC) en face structural OCT (A), CC en face OCTA (B) and CC OCTA binarized image (C). 
Areas of CC impairment (yellow arrow) surrounding the GA lesions are evident on the en face OCTA (B) and the corresponding binarized 
image (C), but not on the structural OCT image (A). This case highlights the extensive CC impairment that may surround GA lesions. 

CBA
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Limitations of OCTA in quantifying choriocapillaris

Although OCTA imaging has provided new insights into the 
CC, there are several limitations that must be considered 
(82,83). First, the quality of the images obtained by OCTA 
can be degraded by the presence of artifacts, which can 
impair the accurate interpretation and quantification of 
the choriocapillaris (83). In eyes affected by dry AMD, the 
presence of drusen and Z-axis micro-motion can produce 
projection artifacts translated into a false positive flow signal 
(pseudoflow), which could impact quantitative analysis of 
choriocapillaris (84). OCTA manufacturers have developed 
various algorithms to reduce or eliminate the projection 
artifacts, though they remain to be validated against 
histology in the setting of disease. OCTA instruments are 
also equipped with proprietary algorithms to compute 
and measure the Imaging Quality Index (IQI) and the 
Signal Strength Index (SSI) of the images, but different 
manufacturers have different acceptable minimum-
quality standards, making it difficult to compare between 
devices. Although, Holmen et al. (85) reported that these 
indices show poor specificity and high sensitivity, the study 
was carried out only on eyes with diabetic retinopathy. 
On the other hand, Al-Sheikh et al. (86) have published 
on the impact of image quality on OCTA quantitative 
measurements, and recommended maintaining consistent 
image quality in order to allow reliable quantitative 
measurements using OCTA. Uji et al. introduced the 
concept of “averaging” multiple en face OCTA images 
to reduce granularity and improve visualization for more 
reliable quantitative CC measurements (87,88). Another 
important consideration is that quantitative CC parameters 
may be affected by the location of the slab segmentation 
and small differences in the slab selection can alternate 
the results (62,66,89). Segmentation slabs close to the 
RPE can be susceptible to segmentation errors, and in fact 
in a recent study by Byon et al. the most repeatable CC 
FD% was found with a deeper slab 10-μm thick, located 
21 μm below the Bruch membrane (89). It is not clear, 
however, whether a deeper slab can serve as an adequate 
surrogate for the CC slab or whether it is better termed 
an inner choroidal slab. Finally, although methods have 
been proposed to compensate for signal attenuation due to 
overlying structures such as drusen, these methods remain 
to be validated, and could potentially introduce other 
unintended artifacts. In addition, the selection of the local 
window radius can significantly impact the CC quantitative 
results when using local thresholding algorithms such as 

Phansalkar’s method (66). The selected radius needs to 
be tuned to the resolution and dimensions of the image 
rather than a specific number of pixels. Despite these many 
limitations, OCTA has contributed richly to enhancing 
our knowledge regarding choriocapillaris alterations in  
dry AMD.

In summary, OCTA can be used to visualize and quantify 
CC impairment in dry AMD. The choriocapillaris may play 
a primary role in the pathogenesis of the non-neovascular 
AMD and warrants longitudinal prospective studies to 
further elucidate the pathophysiologic sequence. The CC 
FD may also provide a useful biomarker to assess the stage 
or severity of AMD, and to predict its progression. As 
such, OCTA-derived CC metrics may be useful in future 
therapeutic clinical trials for AMD.
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